Survival and Event History Analysis
Lecturer Jan Beyersmann
Exercises taught by Jan Feifel
General Informations
Language English
Lectures 4h
Exercises 2h
Prerequisites: Elementary Probability Calculus, Stochastic I, Measure and Integration Theory, basic Programming Skills.
The level of the course is roughly that of a first year's master course in Mathematical Biometry. Basic knowledge of standard survival analysis and of R is helpful, but not mandatory.
Time and Venue
Lectures Monday 10h - 12h & Friday 10h - 12h; Helmholtzstraße 18, Room 120
Exercises Wednesday 12h - 14h, Helmholtzstraße 22, Room
The lecture starts Friday, April 26, 2019 (Easter Monday is on the 22th April).
Oral Exam TBA
Exercise Sheets
Will be available on Moodle. Password is provided during the first lecture!
Contents
Time-to-event data are omnipresent in fields such as medicine, biology, demography, sociology, economics and reliability theory. In biomedical research, the analysis of time-to-death (hence the name survival analysis) or time to some composite endpoint such as progression-free survival is the most prominent advanced statistical technique. At the heart of the statistical methodology are counting processes, martingales and stochastic integrals. This methodology allows for the analysis of time-to-event data which are more complex than composite endpoints and will be the topic of this course. The relevance of these methods is, e.g, illustrated in the current debate on how to analyse adverse events. Time permitting, we will also discuss connections between causal modelling and event histories.
Literature
Aalen, Borgan, Gjessing: Survival and Event History Analysis, Springer 2008
Andersen, Borgan, Gill, Keiding: Statistical Models Based on Counting Processes, Springer 1993
Beyersmann, Allignol, Schumacher: Competing Risks and Multistate Models with R, Springer 2012